JunoCam Image Processing

Europlanet

Observatoire de la Côte d'Azur Nice 2016-05-13

Gerald Eichstädt

Raw Swath Example: JNCE_2013282_00C102_V01 (EFB12)

Structure of a Raw Swath

Image: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt

- Within one swath, all exposures consist of the same number of framelets.
- All framelets within one swath are of the same width and height.

Usual Structure of an Exposure

Alternative 1: Three framelets

Height = 3x128 pixels

Width = **1648** pixels

Alternative 2: One framelet

Height = 128

pixels

Alternative 3: One framelet, 2x2-binned

Height = 64 pixels

Width = **816** pixels

Example: Exposure of Three Framelets

Image: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt

Mismatch Between Framelets

Image: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt

Gap Between Framelets

Image: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt

Exposure Readout on the CCD

All Readout Regions on the CCD

Color Filters

Result: Colored Exposure

Next Colored Exposure

Combine Channels of ... 02 Colored Exposures

Combine Channels of ... 03 Colored Exposures

Combine Channels of ... 04 Colored Exposures

Combine Channels of ... 08 Colored Exposures

Combine Channels of ... 14 Colored Exposures

Select a Region...

Zoom-In Reveals Mismatches

Select Detail...

Image: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt

Zoom Into Detail

Image: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt

One reason for mismatch: Geometry of image depends on rotation of camera.

Rotation-Invariant Spherical Coordinates

Image: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt

Associate camera pixel positions with respective 3-d pointing vectors. One reason for remaining mismatch: Translational motion of Juno.

Time-Variant Reprojection

Image: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt

"Time-variant" reprojection varies simulated time with y like raw data; method is *locally* resilent w.r.t. small errors in shape model and trajectory. Consider **NAIF** / **SPICE** to estimate shape model and trajectory.

Some Dark Spots On the CCD

Image: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt

The few dark spots are at fixed pixel positions on the CCD. In swathes they show up as repetitive patterns.

Zoom-Out Contains Overlap Region

Image: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt

Overlap region combines framelets taken at different times.

Select Detail of Overlap Region...

Image: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt

Residual global errors in shape model and trajectory visible.

Zoom Into Overlap Region

Image: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt

One reason for mismatch: Rotation of Planet. Consider also TDI, small spacecraft nutation and model inaccuracies.

Include Rotation of Planet

Image: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt

Registering looks good. But colors are cast to reddish.

Moon as Color Calibration Target

Image: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt

Moon is visible in Earth fly-by image EFB01. Define Earth's moon as grey.

Calibrate Colors

Image: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt

Weight factors: red x 0.510, green x 0.630, blue x 1.0 Factors apply to square-root encoded raw images.

Global View of Time-Variant Reprojection

- Looks almost photorealistic.
- Slightly distorted, since perspective is continuously changing over y.

Reprojection for Start-Time

Image: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt

Southern hemisphere imaging startet immediately after start-time. Then the camera pointed to outer space for more than 20 seconds.

Reprojection for Stop-Time

Image: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt

Northern hemisphere imaging ended immediately before stop-time. In the meanwhile Juno's vantage point moved.

Animation Using Two Consecutive Swathes

Image: NASA / JPL-Caltech / SwRI / MSSS / SPICE / ffmpeg / Gerald Eichstädt

Simulation of a flight near Juno's actual trajectory.

"Methane" and RGB Image Reprojected

Image: NASA / JPL-Caltech / SwRI / MSSS / SPICE / Gerald Eichstädt

Reprojection of consecutive images to same instant simplifies comparision.

Combining to a False-Color Image

Image: NASA / JPL-Caltech / SwRI / MSSS / SPICE / Gerald Eichstädt

The methane image is used to replace the green channel of the RGB image. Continents look greenish due to plants reflecting near infra-red.

Skipped

- Time Delay Integration (TDI)
- Flat field
- Hot pixels
- JPG/DCT compression
- Linearization / Radiometric Factor
- Stray light
- Light leaks
- Energetic particles and camera degradation
- Geometric in-flight calibration
- Methane filter spectral properties

More High-Level Products

- Stereo images
- Map projections
- Merging several swathes
- Feature tracking
- Cloud-top topography
- Wind fields

. . .

- Radiation counting
- Event detection (lightnings, impacts)
- Superresolved products

Thank you for your attention!

Further reading:

Junocam: Juno's Outreach Camera C.J. Hansen·M.A. Caplinger·A. Ingersoll· M.A. Ravine·E. Jensen·S. Bolton·G. Orton

You may also be interested in following the links and discussions at <u>unmannedspaceflight.com</u>

Questions, Remarks?