Workshop on Juno Ground-Based Support from Amateurs

- Atmospheric Dispersion is induced by Earth atmosphere
 - Due to refraction of incoming light from planets or stars
 - Due to Earth atmosphere refraction index variable with wavelength → blue is more deviated than red
- Spread vertically light spectrum

 for astronomers a red border on one side and blue border on the other side
- Phenomenon all the more accentuated when the incoming light angle with atmosphere normal is important → thus for low elevation objects

- For imaging -> possible realignment of color planes alleviate the problem.
- But this method will only partially correct it
 - Atmospheric Dispersion inside filters bandwidth is not corrected
 - ◆ Correction all the more incomplete with larger filter bandwidth → luminance filter particularly affected
 - The effect can be assimilated to a blur inside each bandwidth.
- Simulation of Atmospheric Dispersion done with Astronomik filters
 - Blue images will be more affected by Atmospheric Dispersion than Green or Red ones
 - The highest degradation is observed for Luminance filter as expected
- Following table provides for different instrument diameter & Astronomik filters bandwidth center elevations under which Atmospheric Dispersion is greater than telescope resolution (using Dawes criteria at 1.02 λ/D)
- Shows Atmospheric Dispersion has noticeable influence for many situations of telescope diameter / elevations → simple color planes realignment process not enough
- A correction at images acquisition level is required

 use of CDA

Instrument diameter	Min elevation Blue	Min elevation Green	Min elevation Red	Min elevation Luminance
100 mm	45°	19°	12°	55°
150 mm	56°	28°	18°	65°
200 mm	63°	35°	23°	71°
250 mm	68°	41°	28°	74°
350 mm	74°	51°	36°	79°
400 mm	76°	54°	40°	80°
500 mm	79°	60°	46°	82°

- Studies on Atmospheric Dispersion phenomenon performed since several years shown that
 - Chromatic shift could be compensated at first order through use of glass prisms
 - ♦ With good performances between 350nm/900nm → largely enough for amateur astronomers
 - Use of Atmospheric Dispersion Corrector (ADC) more recent for amateur astronomers
- Several possible concepts elaborated, mainly
 - Single prism design
 - Prism oriented in "vertically" so as to counteract atmosphere effect
 - The oldest design used by amateur astronomers
 - Not convenient to use :
 - ▶ A prism is designed for a given range of elevations
 - Prisms shall be exchanged regularly during night when elevation change
 - 2 identical prisms design : so-called Risley prisms
 - Both prisms built with the same glass: usually BK7 or Fused Silica
 - Prisms installed in a mechanism allowing to obtain counter-rotating system generating a variable compensation as function of the angle of rotation
 - Much more convenient to use: rotation of prisms can be tuned all along the night depending on elevation
 - Correction capacity depends on prisms angle : usually 2° or 4° α-angles
 - But this system induces a lateral deviation of incoming light
 - Deviation even at position 0
 - ▶ Object image moves on detector during ADC tuning → re-center required after tuning
 - Might be problematic for applications with small Field of View
 - Amici prims assembly
 - Each Amici prism is made of 2 identical prisms built from glass with different refraction index
 - Use of 2 Amici prisms allow to obtain same tuning capacities than with Risley prisms
 - But avoid having the lateral deviation mentioned above
 - Concept much more complex to built
 - More glass elements with coating → light transmission degraded (particularly in UV)

- ADC efficiency
 - Depends on its distance to focal plane
 - The nearest ADC from focal plane, the less efficient ie the larger required prisms tuning angle
 - ADC near focal plane
 - Allow to have good tuning sensitivity
 - ▶ But reduces correction capacity (ie minimum elevation angle accessible) depending on prisms angles
 - Depends on system focal length
 - The larger the system focal length the less efficient is the ADC
 - But the focal length is mainly driven by resolution & sampling

$$Disp_{ADC} = Disp_{atm} * \left[\frac{F}{l} - 1\right]$$

- ADC use rules & tuning
 - ◆ ADC shall be used with F/D large enough to avoid impact on instrument optical quality (astigmatism?) → placed after the Barlow
 - ADC shall be placed at the right position wrt efficiency considerations presented previously
 - ADC levers shall be tuned symmetrically wrt horizontal to counteract vertical effect of Atmospheric Dispersion
 - ADC levers shall be placed on East or West sides of the telescope depending on optical setup
 - Tuning possibilities
 - Visually on planet using the same optical setup as for imaging
 - Using violet filter (W47) with its IR leak generating a ghost but hardly seen visually
 - Using software features: Firecapture includes a tool showing real-time shift of RGB color layers

- Simulation of ADC efficiency
 - Done for a 200mm telescope with F/D of 30

SFS ADC located 100mm from focal plane

Available correctors

- Few in the past
 - Astrovid : single prism mechanism → use of 2 assemblies with rotating tubes
 - Astro Systems Holland (ASH) → rotating BK7 prisms with levers
- Much larger offers on the market today
 - Pierro Astro : SFS prisms with levers and scale 2 possible coatings (VIS or UV oriented) – T2-compatible
 - New ASH ADC → coated or uncoated BK7 or SFS prisms scales by levers – T2-compatible
 - ZWO ADC (new) → similar to the 2 other ADC : BK7
 prisms, broadband coating, levers & scale T2-compatible
 - Gutekunst Optiksysteme (sold through apm-telescope):
 made of 2 pairs of 2 crown-flint prisms
 - ► → Amici concept allowing to avoid deviation
 - Said to maintain optical performances of the telescope → wide field or even on-axis?
 - ▶ Simple ADC adjustment through 1 screw with scale
 - ▶ But cost 12 to 30 times more than other ADC !!

